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RESUMEN:

Se hace un intento de estimar los par &metros mésimportantes del brote deinfluenza A(HIN1) en los Estados Unidos de América
en 2009 sobrela base de la informacion publica emitida por los Centros para el Control de Enfermedades (CDC)
norteamericano durantelos diasiniciales dela epidemia. Por tratar se de un problema estadistico mal planteado, se combiné la
estimacion no lineal (método de Gauss-Newton y de Hooke-Jeeves) con procedimientos de linealizacion que per mitieran
establecer un conjunto adecuado de valoresiniciales para comenzar la estimacion recursiva de los par ametros.

Sobrelabase delos datos disponibles hasta el 13 de mayo de 2009, se predicen los siguientes valores para el brote en los Estados
Unidos. Tau (tiempo hasta € pico deincidencia) 32 dias; Rg (numero de infecciones secundarias por individuo infectado)1.7; K
(numero total de casos) 20000 (15000-35000). Estos resultados concuer dan con lo reportado por e "WHO's Rapid Assessment
Team" paralaepidemiaen México. El método puede aplicar se en cualquier locacién donde seregistren adecuadamente el
ndmero cumulativo de casos de una epidemia o brote.

PALABRAS CLAVE: Inluenza A(H1N1). Modelos M ateméticos par a epidemias. Prediccién de la evolucién de un brote.
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SUMMARY:

An attempt is made to estimate the main parameters of the 2009 | nfluenza type A(H1N1) outburst in USA based on public
information provided by Centersfor Disease Control (CDC) during the early stage of the epidemic. Given theill-posed nature of
the statistical problem, a nonlinear fuction estimation method (Gauss-Newton and Hooke Jeeves) was combined with
linearization proceduresthat allowed to set adequateinitial guess valuesfor estimation.

Based on data until May 13th, 2009, the following values are predicted for the USA outbreak: Tau (time to the peak of incidence)
32 days; Ry (number of secondary infections per infected individual) 1.7; K (total number of cases) 20000(15000-35000). These
resultsarein good agreement with the values reported by the WHO's Rapid Assessment Team for the outburst in Mexico. The
method can be applied in any setting wher e cumulative number of cases are properly recorded.

KEY WORDS: A(H1IN1) Influenza. Mathematical models for epidemics. Outburst evolution prediction.

INTRODUCTION

HIV/AIDS, Ebola, SARS, Avian Flu, and the Swine Flu A(H1N1) are examples of infectious diseases, completely unknown to the
human immune system, that appeared in the last years. The dates of appearance of these cited above suggest that in the next ten
yearsal least several new similar scenarioswill emergel.

It isuncertain whether public health systems areready to face a pandemic of a new disease2. Evidences from the spread of AIDS
in Southern Africa, tojust present an example, cast doubt on a positive answer.

Among the questionsthat areimportant for individuals, public and authoritiesthereisthe prediction of an ongoing epidemic3.
SARS affected more than 7000 per sons wor Idwide#, whereas HIN1 probably will surpassthat number several timesS.

A crucial issue on an ongoing epidemic isto have estimates for values such asthe expected total number of cases, the moment
when the peak will be attained, aswell asthe number of personsinfected by a single primary casef.

Public health services are mobilized the very first days of an outbreak, since early planning is decisive. Unfortunately these are
the days when the prediction is poorest; from the large number of modelsthat could be used all of them are highly nonlinear,
and having few data points can lead to false values, and subsequently, spoil the whole process of resour ce planning.

A very important point iswhich model to select for making the approximations. With available computer technology models can
be as complicated aswished, and literature can provide wide evidence on that point”.However, when littleisknown about the
mechanisms of the ongoing disease, it isadvisable to select the simplest models being capable of adapt to different possible
variants. Picking a complicated and shrewd model in this case is compar able to the well known case of attempting to describethe
growth curve of a dog with a miligram-precision scale.

At the sametime, experience showsthat for alarge variety of models, the incidence | (t)during an outburst can be nicely
approximated by the following function, that was proposed 70 years ago by Kermack and McKendrick asan fairly accurate
solution to their seminal " SIR" model8.

I (t)=A*sech2(Bt-C) (1)

In thiscase A givesthe peak value of incidence, that appearsat time Tau= C/B
If the dates of onset of cases are properly documented, this can be a good candidate function to befitted.

Thus, for the HIN1 outbreak in a New York school in April 2009, wher e epidemiological information was under strict scrutiny®,
a good approximation was obtained applying a Gauss-Newton algorithm to model (1) (fig 1). This school-based outbreak isthe
largest cluster of HIN1 flu cases reported in the United Statesthusfar, and indeed is a valuable sour ce of information.
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Figure 1. Data from an HIN1 outburst in a school in New York in April 2009.
Data were fitted with model (1) yielding the following values A=30.93 (vs. 28 observed) B=1.48 C=4.11; C/B=2.77
(vs. the observed value of 3). 99.43% of the variance was explained with the model.

However, it isdifficult to havereliable data about real incidencein practical situations. Thus, from the 642 casesreported
between April 15th 2009 and May 5th 2009 in the US, it was possible to identify the date of the onset of symptoms only for 394
patients (61%) 10. In places with mor e fragile health infrastructur e no better reliability isto be expected.

It seems preferable to use cumulative data S(t), for which the Richards model can be valid 2:
S(t)=K/(1+exp(r(Tau-t))) (2

K correspondsto thetotal number of cases and equals

K= (S(0)*(1+exp(r*Tau))  (3)

Tau hasthe meaning of the peak timefor incidence, and the basic reproductive number RO (defined as the average number of
secondary cases generated by one primary case) can be estimated as
Ro=exp(Tg*r)  (4)

Where Ty isthetransmission time, or the mean time between the appearance of symptomsin the primary case and the

appear ance of symptomsin a secondary case 2. To use for assessing an epidemic cumulative confirmed cases data presents
several limitations, including the lag between starting of the window of viral shedding and the laboratory report, aswell as
complicationsrelated to the uneven speed of laboratory confirmation of suspected cases, but there are reasons to assume that
these are the best data publically available at this moment.

Theother limitation isdueto finding parameters from a data set that obviously is not the best suited for " academical"
approximation purposes. For illustration, on how difficult thistask can be, in figure 2, the best expected prediction for the
Richards model isrepresented in the solid blue line wher eas the cumulative cases numbers for USA until (12 of May, 2009) are
represented asred crosses.
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Figure 2 CDS confirmed data for USA since April 21 2009 until May 12th (+) and
putative evolution curve estimated using the methods described in this paper (solid blueline)

Thereare several approximation methodsto fit nonlinear datainto models, such as Simplex, Hooke-Jeeves, Gauss-Newton, that
have been implemented in different commercial statistical packages. These allow, in principle to simultaneously estimate several
parametersfrom a data set. However, straightforward estimation beyond the domain of observed values with a highly nonlinear
function, isnot alwaysreliable. Thusfor the case of USA A(H1N1) data set, estimatesfor k, using all parametersat atime,
yielded values of k equal to 160000, 3241 or 6217 in all the three cases showing " excellent" fits with explained variances higher
than 95%. In other words, data are behaving asthose typical for ill-posed inverse problems. A practical way totry to deal with
thiskind of problemsislimiting the space of possible solutions, and imposing the solutions certain plausible requirements. In this
case, the use of linearizations and manual stepwise estimation of values seemsto be recommended.

We ar e testing this approach in the case of H1N1 cases confirmed by CDC until May 13th, 2009 (Figure 1)

Thefirst attempt to linealize dataisasfollows. If r(Tau-t)>>1, the inver se of (1) can be seen as
1/S~exp (r(t-tau)),

From a Taylor expansion of the exponential function till the fourth power, it can be obtained the following approximation for the
fourth root if the inver se of S(t)

(USO)™ (1/4) ~~(r (t-tau))

Theright side becomes equal to zero when t=Tau; thusfrom the relationship between the inver se of the cumulative data and
elapsed time, it is possible to obtain a good guess for the timeto the peak of the outbur st.

Asit can be seen from Figure 3, data for USA fit well into this approximation and a guess value for Tau= 32.56 is assumed
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Figure 3. Nearly linear relationship between the fourth root
of thereciprocals of cumulative data and time. The time when the line crosses the axis of abscissas
istaken asarough initial estimate for Tau in Richards model (2).

This seemsto be a reasonable guess, since cumulative data areincreasing after 27 days from the onset of the outburst.

Inspection of (1) suggeststhat a nearly linear relationship must be between In(S) and time.
In this case theintercept will depend on all the 3 parameters of the model and hasllittle practical use. However, the slope can
bring a good initial estimatefor r. Asit can be seen from figure 4, a value of r=0.324 is suggested.
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Figure 4. Nearly linear relationship between natural logarithm of cumulative cases and time.
Theslope of theregression lineistaken asa guessvalue for parameter r in model 2.

If avalue of generation time T,=2.3 is accepted as the most plausible for HIN1 1112, this suggests a value of R0=2.1, which isin
agreement for thefirst early report in the range of Ry=1.4-1.6 made for HIN1in Mexico®.

Since S;=2, from expression (3) it can be obtained, a value of k=56004 cases. Obviously, the power function (3) isvery sensitiveto
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errorsin the estimates. Refining the approximation can provide a morereéiable datum.

If these values wer e true, we must see the peak of incidence on May 21, the basic reproductive number (Rg) is2.1 which is

similar to the value of 1.4-1.6 reported by the WHO rapid assessment team for Mexico®, and about 28.000 cases will be reported
for May 21,

Having theseinitial estimates, a refinement can be found using a nonlinear function estimation method such as Gauss Newton or
Hooke-Jeeves.

For coming to the final value werecursively refined the model's parameters. For that, we started with the two estimates obtained
from linearization and applied the Gauss Newton algorithm to estimate k. After thisthe estimation procedure was repeated each
time feeding the model with new updates for several times (from 4 to 19). The stop criteria werethe highest explained variance
with reliable estimates and similarity in subsequent estimation of parameters. I n this example, the explained variance rose from
92% t0 96%.

Thefollowing " final values' were found:

Tau=32.65 days

r=0,232

K=19826

96% of the variance explained.

This correspondsto an estimate of Rg=exp(2.3*0.232)=1.7, which is closer to the above mentioned estimate obtained by the WHO
Rapid Assessment Team for Mexico.

In Mexico, an estimate of 23000 cases (between 6000 and 32000) has been reported for parameter K. Dueto thesimilarity in
population between the two countries, our estimate seemsto bein agreement.

Publically available information from the Centersfor Disease Control13 also allow studying data from different states.

In table 1 data for some states are provided based on reportsuntil May 15th, 2009. The agreement between valuesof r is
noticeable.

Onset of Tau % of explained

Outburst variance
California | 17/04/2009 | 34.926 | 0.2015 | 1987 94.61
lllinois 01/05/2009 | 23.03 | 0.1545 | 3036 86.67
Texas 23/04/2009 | 20.87 | 0.213 | 2506 93.96

Table 1. Estimates obtained from H1IN1 cumulative data
until May 13th for 4 different statesfrom USA.

Early estimates

Themain question we are addressing hereis how reliable it can be an estimate obtained from early data of an outburst.
Apparently, comparing the evolution of estimates as the outburst proceeds can help in clarifying this question.

We analyzed, starting from day 7 from onset (with only 3 values) how different parameterslooked like. It should be payed
attention to thefact that the second report was 6 days after thefirst report, thus on the day 7th only 3 data points were available.
Thiswould suggest that early estimates can have only a very rough approximative value, but, in any case, are of great value
when very littleisknown about the epidemic.

In figure5it can be appreciated that predictionsfor Tau closeto 30 days appear since day 12 (with only 8 data points available).
From all observationsthe mean and standard deviation for Tau were 31.0£5.2

http://biomed.uninet.edu/2009/n2/caceres.html
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Figure5. Estimatesfor Tau in model (2)
obtained from cumulative data gathered at different dates after the onset
of data collection on April 17, 2009.

In figure 6 values for parameter r are shown. After day 12 the parameter keeps nearly constant values around 0.33 and at the
end they go to smaller values, below 0.20 (0.31+0.12).
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Figure 6. Estimatesfor r in model (2) obtained from
cumulative data gathered at different dates after the onset of data collection on April 17, 2009.

Finally, the parameter K (fig 7) takes values between 5000 and 50000, with an apparent tendency to lie between 10000 and 20000
on later days (25294+11965).

Thefull set of valuesisin table 2
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Days tau r k %
Variance

7 43.98 0.19 9197 99 44
8 37.68 0,228 9477 98.86
9 22.26 0.6577 43541 90.0
10 20.9 0.5675 20584 97.8
11 19.68 0.566 8108 9917
12 28.07 0.30 9990 91.02
13 30.07 0.34 38919 96.86
14 28.76 0.336 21442 97 44
15 31.94 0.331 47121 96.29
16 31.97 0.327 44800 96.49
17 32.20 0.317 38013 96 .85
18 29.35 0.328 20252 96 .34
19 30.89 0.328 32863 98.05
20 30.78 0.328 31685 99.00
21 30.94 0.333 40386 95.97
22 30.71 0.304 30476 96 41
23 28.89 0.254 16425 95.90
24 30.75 0.253 18207 89560
25 32.65 0.232 19826 95.50
26 33.2 0.226 22477 9595
27 33.04 0.215 19990 a7 .05
28 34 .62 0.208 24809 97.51
31 37.22 0.165 23290 89393
32 34 .38 0.163 15169 94 67
- 33.26 0.167 13126 89519
35 34.35 0.155 13853 95.35
38 +5.12 0.145 12450 94 &80
40 38.306 0.128 16001 93.90
41 40.32 0.115 17704 94 67
42 39.62 0.116 16683 95.57
43 41.29 0.110 18277 95.85
44 43.79 0.106 20724 96.01
45 43.42 0.104 201256 96.55
46 42 .90 0.106 19737 96.75
47 46.66 0.1002 24480 96.87
52 42 .80 0.106 19844 97 .61
54 40.56 0,119 18328 97.53
b7 40.9684 0.11937 19046 97.556

Table 2. Evolution of parameters estimates
for USHIN1 cumulative data asthe outburst proceeds.
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Figure 7. Estimatesfor k in model (2) obtained from cumulative data
gathered at different dates after the onset of data collection on April 17, 20009.
DISCUSSION.

Overall, these results suggest that USA H1IN1 data may be described with the Richards model, and reliable estimates for both the
peak of incidence aswell asfor Ry can be obtained from early data.

If we accept the value of Tau=38 asa true value, our results suggest that with aslittle as 6 observations, corresponding to less
than half of Tau, quite acceptable estimates wer e observed for all the three parameters.

The estimates for the total number of cases give only rough orientation using this approach, but judging by the ampleinterval of
possible values provided by the WHO Rapid Assessment Team, it seemsthat better precision isdifficult to be attained. The
simplest explanation for thisfact comesfrom theerrorsin Tau and r. Since K depends on the exponential of the multiplication of
these two parameters, a high span of values can be observed, in this sense, changing by a factor of 4 from lowest to highest value
isnot avery large dispersion.

Therearelarge data sets about epidemicsthat have been modeled using different approaches, and valuable conclusions were
drawn from them. However, the case when few data are at hand and it is necessary to maximally squeeze information from them
isnot uncommon in many places. Thisreport has been an attempt to addressthislast situation.

We assume that dueto the simplicity of thismethod and its possibility to bring early estimates of important parameters, its
implementation could be of use practically in any setting wher e data can be properly collected.

The general Model of Richard includes a sigmoidicity parameter that apparently changes while analyzing real data. In USA flu
data this parametersispractically 1 (0.999307 with 96.75% of explained variance when 35 data points corresponding to thefist
45 days of the outbreak wer e analyzed), which substantiate the choice of the simple version of the model.

CONCLUSIONS

. Traditional methodsfor nonlinear approximation are of little useif are applied straightforward for simultaneous
parameter estimation from the beginning of an epidemic outburst.

. Properly transforming cumulative data can provide good initial estimatesfor the timeto peak aswell asfor the basic
reproductive number.

. Initial estimates of the total number of cases have only an orientative value, and can be between a half and the double of
morereliable estimates.

. Stepwise use of classical approximation methods can yield acceptable estimates at the beginning of an outburst.
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. Thefollowing parameterswere predicted from the USA HIN1 cumulative cases data:
= Timeto peak=32 days (19th of May)
» Rpclosetol.7

« Total number of cases 20000 (Ranging from 9000 to 48000, and being close to 10000 on may 21t)
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The article shows how epidemic data can be adjusted to a well known model. With the available data the author s can estimate
some parameter sthat can serve asearly predictorsfor theincidence of A(H1N1) influenza.

It isstill pending to seeif these estimations will work well as early estimator swith future epidemic outbursts

Comment of the reviewer Prof. José Maria Eir s Bouza. Professor of Microbiology, Faculty of Medicine, University of
Valladolid. Head of Virology, Hospital Clinico Universitario. Advisory Committee of the WHO Influenza. Member of Working
Group National Influenza Center. Espafia.

L os modelos estocasticos aplicables a enfer medades infecciosas epidémicas revisten un innegable inter és. Sus asuncionestedricas
necesitan posterior comprobacion, pero ello no resta oportunidad al disefio de los mismos.

En el presentetrabajo Hernandez Céceres et al plantean la estimacion de los par dmetr os que consideran importantesen €l brote
degripe A HIN1 dela nueva variante en los Estados Unidos de América en 2009, con referencia a la informacion publica
emitida por los CDC durante losdiasiniciales de la epidemia. Dela lectura del mismo cabe apuntar su potencial aplicacion a
otras situaciones en las que se registren adecuadamente el nimer o acumulativo de casos de una epidemia o brote.

Esnotorio el esfuerzo metodoldgico querealizan los autor es desde el Centro de Aplicaciones Ciber néticas de La Habana, que
debe constituir un estimulo para cuantos desarrollan su actividad en modelos predictivos.
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